GCSE
 Mathematics

8300/1H-Paper 1 Higher Tier

Mark scheme

8300
June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

1	40	B1	

$\mathbf{2}$	$\binom{2}{-3}$	B1	

$\mathbf{3}$	$5 a-4 a^{2}$	B1	
$\mathbf{4}$ 500 B1			

Question	Answer	Mark	Comments

7	x-coordinate of $C=12$ or y-coordinate of $C=8$ or 12 marked on x-axis below C and 8 marked on y-axis left of C or x-coordinate of $D=6+6+6$ or y-coordinate of $D=2+3+3+3$ or $\frac{x}{6}=3 \text { or } 6=(2 \times 0+x) \div 3$ or $\frac{y-2}{5-2}=3$ or $5=(2 \times 2+y) \div 3$ or 18 marked on x-axis below D or 11 marked on y-axis left of D	M1	oe sets up a correct x-coordinate of D or	or dinate of D
	(C is the point) $(12,8)$ or (D is the point) $(18, \ldots)$ or $(\ldots, 11)$ or 18 marked on x-axis below D and 11 marked on y-axis left of D	A1	condone missing b clear	f intention
	18, 11	A1		
	Additional Guidance			
	$(12,8,18,11)$ on answer line with previous link to C and D $(12,8,18,11)$ on answer line with no previous link to C and D			M1A1A1 M1A1A0
	12,8 on answer line with no other working			M1A1A0
	Accept correct working on diagram and correct answer on diagram if not contradicted by answer line			
	11, 18 on answer line does not score the last mark, but may score M1A0 or M1A1			
	11, 18 with no working			MOAOAO

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

9	Alternative method 1			
	$-2 \frac{7}{8}+15 \frac{1}{4}$ or $15 \frac{2}{8}$ or (-)2.875 and 15.25 or $(-) \frac{23}{8}$ and $\frac{61}{4}$	M1	oe common denominator for both fractional parts of the mixed numbers conversion of both numbers to decimals with at least one correct conversion of both numbers to improper fractions with at least one correct	
	$\begin{aligned} & -2 \frac{7}{8}+15 \frac{2}{8} \\ & \text { or }-2.875+15.25 \\ & \text { or }-\frac{23}{8}+\frac{122}{8} \end{aligned}$	M1dep	oe common denominator correct decimals oe common denominator	
	$\frac{99}{8}$ or $12 \frac{3}{8}$ or 12.375	A1	oe fraction, mixed number or decimal	
	Alternative method 2			
	$-2+15$ and $(-) \frac{7}{8}+\frac{1}{4}$	M1		
	$\begin{aligned} & -2+15 \text { and }(-) \frac{7}{8}+\frac{2}{8} \\ & \text { or } 13-\frac{5}{8} \end{aligned}$	M1dep	oe common denominator	
	$\frac{99}{8}$ or $12 \frac{3}{8}$ or 12.375	A1	oe fraction, mixed number or decimal	
	Additional Guidance			
	$15 \frac{1}{4}--2 \frac{7}{8}$ scores M0, but followed by $15 \frac{2}{8}+2 \frac{7}{8}$ scores M1 on Alt 1			
	Values in $2^{\text {nd }}$ mark must be correct; no ft from incorrect conversion			
	$\frac{99}{8}$ incorrectly converted to a decimal or mixed number			M1M1A1
	$13 \frac{-5}{8}$			M1M1A0

Question	Answer	Mark	Comments

10	$(x=) 3 \text { and }(y=) 2$ in correct positions	B2	B1 $y=\frac{24}{x}$ or $4=\frac{k}{6}$ or $k=24$ oe or ($x=$) 3 in correct position above 8 or $(y=) 2$ in correct position below 12	
	Additional Guidance			
	$y=\frac{1}{k x}$ or $4=\frac{1}{6 k}$ oe followed by $k=\frac{1}{24}$, with no or incorrect values in table			B1

Question	Answer	Mark	Comments

11(cont)	Alternative method 4 - trial and improvement using ratio of sides			
	length $=2 \times$ width seen or implied	M1		
	Two correctly evaluated trials for perimeter of small rectangle with length $=2 \times$ width	M1dep	$\begin{aligned} & \text { eg } \\ & 8+4+8+4=24 \\ & \text { and } 10+5+10+5=30 \end{aligned}$	
	2.5 and 5	A1	implied by $2.5+5+2.5+5=15$	
	25	A1		
	Additional Guidance			
	Note that there is no ft in method 4			
	In all methods, marks can be awarded for annotation of the diagram, with lengths clearly identified, or working inside or alongside the diagram eg 2.5 and 5 marked correctly as the dimensions of the small rectangle 2.5 marked as the width of the small rectangle and 7.5 marked as the length of the large rectangle			M1M1A1 M1M1A1
	If full marks not awarded, mark both the diagram and working then award the better mark			
	In alt 4, one or more trials may be crossed out to indicate that they do not give the correct perimeter. Do not treat this as the usual crossed out work not to be marked if replaced.			

Question	Answer	Mark	Comments

12	One correct conversion to a comparable form $\begin{aligned} & 0.08 \times 10^{-2} \text { or } 0.0008 \\ & 400 \times 10^{-4} \text { or } 0.04 \\ & 0.06 \times 10^{-2} \text { or } 0.0006 \\ & 7 \times 10^{-2} \text { or } 700 \times 10^{-4} \end{aligned}$	M1		
	$\begin{aligned} & 6 \times 10^{-4} \\ & 8 \times 10^{-4} \\ & 4 \times 10^{-2} \\ & 0.07 \\ & \text { with no clearly incorrect working } \end{aligned}$	A1	oe accept in conver	
	Additional Guidance			
	Correct answer from clearly incorrect working			A0
	Accept numbers with two decimal points if it is clear that the point has been moved to the correct place eg 0.0008 .0 with curved lines between each place value between the decimal points			
	If the numbers are converted into fractions, at least two must be given correctly with common denominators to score the first mark eg $\frac{4}{100}$ and $\frac{7}{100}$ eg $\frac{6}{1000}$ and $\frac{8}{1000}$ only eg $\frac{6}{10000}$ and $\frac{7}{100}$ only			M1 M0 M0

13	$15000 \mathrm{~mm}^{3}$	B1	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

14(b)	Alternative method 1			
	$12 \div 20$ or $0.6(0)$	M1	oe	
	their $0.6(0) \times 3 \div 2$ or $0.9(0)$ or $14.4(0)$ or 26.4	M1dep	oe	
	26.40	A1	correct money notation	
	Alternative method 2			
	$12 \times 3 \div 2$ or 18	M1	oe	
	their $18 \div 20$ or $0.9(0)$ or their $18 \div 5 \times 4$ or $14.4(0)$ or 26.4	M1dep	oe	
	26.40	A1	correct money notation	
	Alternative method 3			
	12 $\div 5 \times 4$ or $9.6(0)$	M1	oe	
	their $9.6(0) \times 3 \div 2$ or $14.4(0)$ or 26.4	M1dep	oe	
	26.40	A1	correct money notation	
	Alternative method 4			
	$16 \div 2 \times 3$ or 24 or 44	M1	oe	
	their $24 \times 12 \div 20$ or $14.4(0)$ or their $44 \times 12 \div 20$ or 26.4	M1dep	oe	
	26.40	A1	correct money notation	
	Additional Guidance			
	Condone 26.40p			M1M1A1
	20 $\div 12$ or $1.66 \ldots$ or 1.67 with no working that is worthy of M1			MOMOAO
	$£ 18$ from using $£ 12$ as the cost of one line (may give a total of $£ 528$)			M1M0A0

Question	Answer	Mark	Comments

15	Alternative method 1			
	$0.25+0.15+0.3$ or 0.7	M1	oe eg 1-0.05-0.05-0.2	
	their 0.7×200	M1dep	oe implied by $\frac{140}{200}$	
	140	A1		
	Alternative method 2			
	$\begin{aligned} & 0.25 \times 200 \text { or } 50 \\ & \text { or } 0.15 \times 200 \text { or } 30 \\ & \text { or } 0.3 \times 200 \text { or } 60 \end{aligned}$	M1	oe	
	$\begin{aligned} & 0.25 \times 200+0.15 \times 200+0.3 \times 200 \\ & \text { or } 50+30+60 \end{aligned}$	M1dep	oe implied by $\frac{140}{200}$	
	140	A1		
	Alternative method 3			
	$\begin{aligned} & (0.05+0.05+0.2) \times 200 \\ & \text { or } 2 \times 0.05 \times 200+0.2 \times 200 \\ & \text { or } 2 \times 10+40 \text { or } 60 \end{aligned}$	M1	oe	
	200 - their 60	M1dep	$\text { oe implied by } \frac{140}{200}$	
	140	A1		
	Additional Guidance			
	Ignore attempt to simplify $\frac{140}{200}$			M1M1A0
	$\frac{140}{200}$ and 140 both on answer line			M1M1A0
	Do not allow a misread of any probability			

16	$5: 6$	B1	
17	$\frac{x}{\sin 42^{\circ}}=\frac{15}{\sin 104^{\circ}}$	B1	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

19(a)	300	B2	B1 1100 or 1400 seen

19(b)	4	B1	
	Additional Guidance		
	Ignore incorrect 'units' eg 4 people	B1	

19(c)	Ticks type B and gives valid reason	B2	eg valid reasons (median for A is) 12 and (median for B is) median for B is 40 B1 no or incorrect decis and (median for A is) and (median for B is) or no or incorrect decis and median for B is or ticks type B and (median for B is) and (median for A is) or ticks type B and B has a larger one median given it	
	Additional Guidance			
	If median values are not given in the wording, look for values on the graph and box plot			
	Ticks type B but gives no valid reason			B0
	Allow use of average or middle for median, or a correct description eg 'top 50% '. Do not accept 'mean' or 'mode' or other statistical measures for median			
	Ignore comments about measures other than the median			
	Ignore units given in explanation			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

| $\mathbf{2 2}$ | ${\mathrm{A} U \mathrm{~B}^{\prime}}^{\text {B1 }}$ | |
| :--- | :--- | :--- | :--- |

Question	Answer	Mark	Comments

Alternative method 1

$\frac{6}{5}$ or $\frac{3}{4}$	M1	oe fractions, decimals or percentages, but not $\frac{6}{5}$ as a mixed number		
$\frac{6}{5} \times \frac{3}{4}$ or $\frac{18}{20}$ or $\frac{9}{10}$				
or 0.9 or 90% or 0.1 or 10%			\quad M1dep	oe fractions or decimals, but not $\frac{6}{5}$ as a
:---				
mixed number				

Alternative method 2

Chooses value for price and increases by $\frac{1}{5}$ or chooses number of laptops and decreases by $\frac{1}{4}$	M1	correct method or value for either eg (£)5 and (£)6 or 20 (laptops) and 15 (laptops)	
Chooses value for price and increases by $\frac{1}{5}$ and chooses number of laptops and decreases by $\frac{1}{4}$ and $\frac{\text { reduced income }}{\text { original income }}(\times 100)$ or $\frac{\text { reduction }}{\text { original }}(\times 100)$	M1dep	correct method or va eg $\frac{6 \times 15}{5 \times 20}(\times 100)$ or $\frac{5 \times 20-6 \times 15}{5 \times 20}(\times$	
$\frac{1}{10}$	A1	oe fraction	
Additional Guidance			
For full marks, accept a fraction equivalent to $\frac{1}{10}$ incorrectly simplified, but not converted to a decimal or percentage			M1M1A1 M1M1A0
If both methods tried and answer incorrect, award better method mark			
Accept variables in any working for M1M1			

Question	Answer	Mark	Comments

24(a)			
16	B2 2^{-4} or $\frac{1}{2^{4}}$ or 4^{-2} or $\frac{1}{4^{2}}$ or 16^{-1} B3 or 0.5^{4} or $\frac{16384}{262144}$ oe fraction B1 2^{18} or $2^{5} \div 2^{9}$ or $\left(2^{2}\right)^{-2}$ or $4^{7} \div 4^{9}$		

24(b)	$25 \times 25^{\frac{1}{2}}$ or $\left(25^{\frac{1}{2}}\right)^{3}$ or $\left(25^{3}\right)^{\frac{1}{2}}$ or $25(\times) \sqrt{25}$ or 25×5 or 5^{3} or $\sqrt{25^{3}}$ or $(\sqrt{25})^{3}$ or $\sqrt{15625}$ or $15625^{\frac{1}{2}}$ or $\sqrt{25 \times 25^{2}}$ or $\sqrt{25 \times 625}$	M1	oe condone \pm on any $\sqrt{ }$	
	125	A1		
	Additional Guidance			
	± 125			M1A0

25(a)	300	B1	

25(b)	240	B1	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

27(a)	Ticks No and gives valid reason	B1	eg valid reasons could use formula could complete the square could use $\frac{-3 \pm \sqrt{29}}{2}$	
	Additional Guidance			
	Any working or solutions shown must be correct			
	If the quadratic formula is written down it must be correct			
	Ignore irrelevant non-contradictory statements			
	Ticks No and 'There are other methods'			B1
	Ticks No and ' a and b could be decimals'			B1
	Ticks No and 'She could draw a graph'			B1
	Ticks No and 'All quadratic equations can be solved (even if the solutions aren't real numbers)'			B1
	Ticks No and 'The discriminant is positive'			B1
	Ticks No and 'Not all quadratics factorise'			B0
	Ticks No and 'It does factorise'			B0
	Ticks Yes			B0

Question	Answer	Mark	Comments

28	$\frac{14 \sqrt{5}}{3}$	B3	oe eg $\frac{28 \sqrt{5}}{6}$ B2 $\left(\sqrt{2 \frac{2}{9}}=\right) \frac{2 \sqrt{5}}{3}$ or $(\sqrt{80}=) 4 \sqrt{5}$ and $\left(\sqrt{2 \frac{2}{9}}=\right) \frac{\sqrt{20}}{3}$ or $\left(\sqrt{2 \frac{2}{9}}=\right) \frac{2 \sqrt{5}}{\sqrt{9}}$ B1 $(\sqrt{80}=) 4 \sqrt{5}$ or $\left(\sqrt{2 \frac{2}{9}}=\right) \frac{\sqrt{20}}{3}$ or $\left(\sqrt{2 \frac{2}{9}}=\right) \frac{2 \sqrt{5}}{\sqrt{9}}$	
	Additional Guidance			
	For B1 or B2, allow $\frac{6 \sqrt{5}}{9}$ for $\frac{2 \sqrt{5}}{3}$ and $\frac{\sqrt{180}}{9}$ for $\frac{\sqrt{20}}{3}$			
	$\frac{14}{3} \sqrt{5}$			B3
	$16 \sqrt{5}+\frac{2 \sqrt{5}}{3}=\frac{50 \sqrt{5}}{3}$			B2
	$4 \sqrt{5}+\frac{2 \sqrt{5}}{3}=4 \frac{2}{3} \sqrt{5}$			B2
	$4 \sqrt{5}+\frac{2 \sqrt{5}}{9}=\frac{38 \sqrt{5}}{9}$			B1
	$2 \sqrt{20}+\frac{\sqrt{20}}{3}=\frac{7 \sqrt{20}}{3}$			B1

Question	Answer	Mark	Comments

29(a)	Alternative method 1		
	$(x+3)^{2}-1$	M1	
	$x^{2}+3 x+3 x+9-1$ or $x^{2}+6 x+8$	M1	oe
	$b=6$ and $c=8$	A1	$\mathrm{SC} 1 b=6$ or $c=8$
	Alternative method 2		
	$(x-3)^{2}+b(x-3)+c=x^{2}-1$	M1	
	$x^{2}-6 x+9+b x-3 b+c=x^{2}-1$	M1	
	$b=6$ and $c=8$	A1	$\mathrm{SC} 1 b=6$ or $c=8$
	Alternative method 3		
	$\begin{aligned} & (x+3+1)(x+3-1) \\ & \text { or }(x--4)(x--2) \\ & \text { or }(x+4)(x+2) \end{aligned}$	M1	difference of two squa from the original roots
	$x^{2}+4 x+2 x+8$ or $x^{2}+6 x+8$	M1	
	$b=6$ and $c=8$	A1	$\mathrm{SC} 1 b=6$ or $c=8$
	Additional Guidance		
	Working out the roots of the original curve or the translated curve is not enough for M1 in alt 3		

Question	Answer	Mark	Comments

29(b)	$y=1-x^{2}$ or $y=-x^{2}+1$	B1	oe equation	
	Additional Guidance			
	$-y=x^{2}-1$			B1
	$y=-\left(x^{2}-1\right)$			B1
	$y=-(x-1)(x+1)$			B1
	$y=1-(-x)^{2}$			B1
	($y=1-x^{2}$ in working with			B0
	$y=(-x)^{2}+1$			B0
	$\mathrm{f}(x)=1-x^{2}$			B0

30	$\begin{aligned} & \frac{\sqrt{3}}{2} \times \sqrt{3}+\frac{1}{2} \\ & =\frac{3}{2}+\frac{1}{2} \\ & =2 \end{aligned}$	B2 $\frac{\sqrt{3}}{2} \times \sqrt{3}+\frac{1}{2}$ B1 $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$ or $\sin 30^{\circ}=\frac{1}{2}$	$\text { an } 60^{\circ}=\sqrt{3}$
	Additional Guidance		
	For B3 all steps must be shown		
	Allow $\frac{\sqrt{3}}{2} \times \sqrt{3}+\frac{1}{2}$ given as $\frac{\sqrt{3}}{2} \times \sqrt{3}$, followed by their $\frac{3}{2}+\frac{1}{2}$		
	Allow equivalent expressions for all trig values eg$\cos 30^{\circ}=\sqrt{\frac{3}{4}} \sin 30^{\circ}=\frac{\sqrt{1}}{2} \quad \tan 60^{\circ}=\frac{\sqrt{3}}{\sqrt{1}}$		
	For B1 allow the trig value(s) given in a table unless contradicted in working		

