

GCSE MATHEMATICS 8300/1H

Higher Tier Paper 1 Non-Calculator

Mark scheme

June 2019

Version: 1.0 Final

196g83001H/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2019 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
sc	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
М dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Commer	nts
1	9	B1		
2	2 <mark>7</mark> 9	B1		
3	6π	B1		
4	<u>37</u> 8	B1		
	9.7 × 10 ⁻⁴	B1		
	Ado	ditional G	iuidance	
5(a)	Condone 9.7 . 10^{-4} or $9.7 \cdot 10^{-4}$			B1
	Ignore zeroes before the '9' eg 00009.7×10^{-4}			B1
	9.7 × 10 ^{4–}			B0

Question	Answer	Mark	Commer	nts
	300 000 and 4000 or $(10^5 \div 10^3 =) 10^2$ or $(10^5 \div 10^3 =) 100$ or $7.5 \times 10^{(1)}$ or 75×10^0 or $\frac{3 \times 10^2}{4}$ or $\frac{300}{4}$	M1		
	75	A1		
	Ado	litional G	uidance	
5(b)	If the answer is given in standard form and as 75 the student must indicate that 75 is their chosen answer or it must be the final answer given eg1 $7.5 \times 10^{(1)} = 75$ on the answer line eg2 $75 = 7.5 \times 10^{(1)}$ on the answer line			M1A1 M1A0
	$\frac{300}{4}$ or 75 from incorrect working scores zero			
	eg1 3×10^5 = 30000 and 4×10^3 = 4	00 and 3	$0000 \div 400 = \frac{300}{4} = 75$	M0A0
	eg2 $\frac{30000}{400}$ = 75			M0A0
	For the method mark, ignore incorrect work from a correct expression eg $0.75 \times 10^2 = 7.5 \times 10^3$		M1A0	
	If the student attempts two methods (attempting to convert to ordinary num award the higher mark	simplifying bers) mai	g the powers and k both methods and	

Question	Answer	Mark	Commer	nts	
6(a)	$\begin{bmatrix} \frac{1}{6} \text{ on '1' and } \frac{1}{3} \text{ or } \frac{2}{6} \text{ on '2 or 3'} \\ \text{and} \\ \frac{1}{2} \text{ on each of 'Odd' and 'Even'} \\ \end{bmatrix} \qquad \qquad$				
	Additional Guidance				
	Accept decimals or percentages rounded or truncated correctly to at least 2 significant figures Only withhold a mark for simplification errors if B2 would otherwise be awarded		incated correctly to at		
	Ignore extra branches added				
	Ignore attempts to work out combined probabilities to the right of the tree diagram				
	If an answer line is blank, the student elsewhere on the branch	may have	e written their answer		

Question	Answer	Mark	Comments	
	Alternative method 1: $P(1) + P(4, 5)$	$(or 6) \times P$	(Odd)	
			(000)	
	$\frac{1}{2}$ × their $\frac{1}{2}$ or $\frac{1}{4}$	M1	ое	
	their $\frac{1}{4}$ + their $\frac{1}{6}$	M1dep	ое	
	(P(win) =) $\frac{10}{24}$ or $\frac{5}{12}$	A1ft	oe ft their tree diagram	
	Lose (and P(Lose) = $\frac{14}{24}$ or $\frac{7}{12}$ oe)	A1ft	ft correct decision for their $\frac{5}{12}$ (and their $\frac{7}{12}$) with M2 scored	
6(b)	Alternative method 2: 1 – P(2 or 3) – P(4, 5 or 6) × P(Even)			
	$\frac{1}{2}$ × their $\frac{1}{2}$ or $\frac{1}{4}$	M1	oe	
	their $\frac{1}{4}$ + their $\frac{1}{3}$		oe	
	or P(lose) = $\frac{7}{12}$	M1dep	ft their tree diagram	
	(P(win) =) $\frac{10}{24}$ or $\frac{5}{12}$	A1ft	oe ft their tree diagram	
	Lose (and P(Lose) = $\frac{14}{24}$ or $\frac{7}{12}$ oe)	A1ft	ft correct decision for their $\frac{5}{12}$ (and their $\frac{7}{12}$) with M2 scored	
	Additional Quidence is on the felle		12	
	Additional Guidance is on the following page			

Question	Answer	Mark	Commei	nts
	Add	itional G	uidance	
	Check the tree diagram for working			
	Any 'their' or ft probability must be > 0	and < 1 f	or marks to be awarded	
	For the second A1ft, the ft can be from score 4 marks) or an arithmetic error (M1M1A0A1ft)	an incor which sco	rect tree (which may pres 3 marks,	
	Accept equivalent fractions or decimal equivalent fractions, decimals or perce	s within c entages fo	alculations and or final probabilities	
	Accept decimals or percentages round least 2 significant figures	led or tru	ncated correctly to at	
6(b)	Condone $\frac{1}{2} \times$ their $\frac{1}{2}$ as part of a lor			
cont	eg $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{6}$			M1M0A0A0
	Condone decimals used within fractions			
	eg P(Win) = $\frac{2.5}{6}$			at least M1M1A1
	For the method marks, condone incorrect mathematical notation eg $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} + \frac{1}{6} = \dots$			at least M1M1 (may go on to score 3 or 4 marks)
	For the second A1ft, if the student gives a value for P(Lose), their P(Win) + their P(Lose) must equal 1			
	However, allow a comparison to $\frac{1}{2}$ un	less it is o	clearly an incorrect value	
	IUI P(LOSE)			

Question	Answer	Mark	Comments		
	Alternative method 1	·			
	$3 \div \frac{20}{100}$ or 3×5 or 15 or 3×6	M1	ое		
	18	A1			
7	Alternative method 2				
	1.2x = x + 3	M1	oe equation		
	18	A1			
	Additional Guidance				
	Trial and improvement scores 0 or 2	unless M1	can be awarded for 15		
	15 seen scores M1				

Question	Answer	Mark	Comme	nts
	$(3^{12} =) 531441$ or $(3^{5} =) 243$ or $(3^{12} \div 3^{5} =) 3^{7} \text{ or } (3^{12} \div 3^{5} =) 2187$ or $(3^{2} \times 3 =) 3^{3} \text{ or } (3^{2} \times 3 =) 27$ or $3^{12} \div 3^{5} \div 3^{2} \div 3$ or $\frac{3^{12}}{3^{5}} \times \frac{1}{3^{2} \times 3}$	M1		
8	$3' \div 3^{3}$ or $3' \div 27$ or $3^{(12-5-2-1)}$ or $\frac{3^{12}}{3^{8}}$ or 3^{4} or $2187 \div 27$	M1dep	oe in the form $3^n \div 3^{(n-1)}$	4)
	81	A1		
	Ade	ditional G	Guidance	
	3 ⁴ and 81 on the answer line in either	order		M1M1A1
	81 in working and 3 ⁴ on the answer li	ne		M1M1A0

Question	Answer	Mark	Comments		
	Alternative method 1: areas				
	$\pi imes 10^2$ or 100π	M1	implied by [314, 314.2]		
	$\pi \times (8 \div 2)^2$ or $\pi \times 4^2$ or 16π or $\pi \times (8 \div 2)^2 \div 2$ or $\pi \times 4^2 \div 2$ or $16\pi \div 2$ or 8π	M1	implied by [50.2, 50.3] or [25.12, 25.14] 92 π or 84 π or 92 : 8 or 8 : 92 or 84 : 16 or 16 : 84 implies M1M1		
	(their $100(\pi)$ – their $8(\pi)$) ÷ their $8(\pi)$ or $92(\pi) \div 8(\pi)$ or their $100(\pi) \div$ their $8(\pi)$ (– 1) or $12\frac{1}{2}$ (– 1) or 12.5 (– 1)	M1dep	dep on M2 absence of π must be consistent condone 16(π) as their 8(π) in first calculation only, ie condone (their 100(π) – their 16(π)) ÷ their 16(π) or 84(π) ÷ 16(π), but not their 100(π) ÷ their 16(π) (– 1)		
	$11\frac{1}{2}$ or 11.5	A1	condone $\frac{23}{2}$		
9	Alternative method 2: scale factor				
	$\frac{10}{8 \div 2} \text{ or } \frac{10}{4} \text{ or } \frac{5}{2}$ or $\frac{10 \times 2}{8}$ or $\frac{20}{8}$ or 2.5	M1	oe scale factor of lengths eg $\frac{2}{5}$ or 0.4 accept 2 : 5 or 5 : 2 oe ratio π may be present, but must be consistent in numerator and denominator		
	$(\text{their } \frac{5}{2})^2 \text{ or } \frac{25}{4}$	M1dep	oe scale factor of areas eg $\frac{4}{25}$ accept 4 : 25 or 25 : 4 oe ratio		
	2 × their $\frac{25}{4}$ (-1) or $\frac{25}{2}$ (-1) or $12\frac{1}{2}$ (-1) or 12.5 (-1)	M1dep	oe eg 2 ÷ their $\frac{4}{25}$ (- 1)		
	$11\frac{1}{2}$ or 11.5	A1	condone $\frac{23}{2}$		
	Additional Guidance is on the follo	wing pag	e		

Question	Answer	Mark	Commei	nts	
	Additional Guidance				
	Accept, for example, $\pi 8$ or $\pi \times 8$ or	$8 imes\pi$ for	8π		
	An answer of 11.5π with no incorrect	working		M1M1M1A0	
	Consistent use of πd^2 for the area of as 400 π , the area of the semicircle as part as 368 π . This also gives the ans	a circle giv s 32π and t wer 11.5, t	es the area of the circle he area of the shaded out scores zero	M0M0M0A0	
	Irrespective of where their answer comes from and the presence of other measures such as circumference, students can gain the first two marks of alternative method 1 if it is clear that the methods or values given are for area				
9	eg 1				
(cont)	Big area = 100π , little area = 8π , big circumference = 20π , little circumference = 4π , $20 \div 4 = 5$			M1M1M0A0	
	eg 2				
	100π, 8π, 20π, 4π			MOMO	
	Do not award the second mark if the	value of 87	π comes from πd	M?M0	
	This is implied by, eg, 'Area of circle	= 20π, area	a of semi-circle = 8π '	MOMO	
	$\frac{100(\pi) - 16(\pi)}{16(\pi)}$ (which may give an	answer of	5.25)	M1M1M1A0	
	$\frac{100(\pi)}{16(\pi)}$ (which may give an answer	of 6.25)		M1M1M0A0	

Question	Answer	Mark	Commer	nts	
			·		
	Plots the points (1, 60), (2, 30), (3, 20) and (4, 15)	M1	$\pm \frac{1}{2}$ small square		
	Correct smooth curve through correct four points	A1	$\pm \frac{1}{2}$ small square		
	Ade	ditional G	uidance		
	Ignore any calculations and mark the				
10(a)	Points cannot be implied by a bar chart or vertical line graph, but condone crosses at the top of a vertical line graph for M1 and the correct curve superimposed for M1A1				
	For M1, ignore the curve outside the domain $1 \le t \le 4$				
	For A1, whether or not the curve extends outside the domain $1 \le t \le 4$ it must not have a positive gradient at any pointIf there is no curve, for M1 there must be no other points with <i>x</i> -coordinate 1, 2, 3 or 4				
	The curve should be a single line with	n no feath	ering		
	Unless it affects the shape of the curve (in which case A1 cannot be awarded), ignore incorrect evaluations of $60 \div a$ non-integer value eg $60 \div 1.5 =$				

Question	Answer	Mark	Commei	nts
	Vertical line from $3\frac{1}{2}$ minutes to their graph	M1	$\pm \frac{1}{2}$ small square implied by mark at corre graph or on the vertical a the horizontal axis) or by from their graph	ct place on the axis (but not on / correct reading
	Correct reading from their graph for $t = 3.5$ A1ftft their graph ±		ft their graph $\pm \frac{1}{2}$ small	square
10(b)	(b) Additional Guidance			
	Correct reading for their graph, with c	or without	evidence of using graph	M1A1
	No graph in (a)			M0A0
	To score any marks, their graph must be decreasing in the domain $1 \le t \le 4$, but may be a straight line or series of connected straight lines			
	Answer from 60 ÷ 3.5 with no graph, or which does not match graph			M0A0
	Reading from 3.3			M0A0

Question	Answer	Mark	Comments		
	Alternative method 1				
	330 ÷ (7 + 4) or 30	M1	ое		
	7 × their 30 or 210		ое		
	and	M1dep			
	4 × their 30 or 120				
	45	A1			
	Alternative method 2				
	330÷(7+4) or 30	M1	ое		
	(7 – 4) × their 30 or 90	M1dep	oe		
	45	A1			
	Alternative method 3				
11	330÷(7+4) or 30	M1	oe		
	$7 \times$ their 30 or 210		ое		
	and	M1dep			
	330 ÷ 2 or 165				
	45	A1			
	Alternative method 4				
	330 ÷ (7 + 4) or 30	M1	oe		
	their 30×1.5	M1dep	oe		
	45	A1			
	Ad	ditional G	uidance		

Question	Answer	Mark	Comments	
12	-9 2 -7 -5 -12	B1		
	One of $(102 \rightarrow) 100$ $(8.14 \rightarrow) 8$ their $100 = 0.5 \times x^2 \times$ their 8	M1	oe	
	or (x^2 =) their 100 ÷ 8 × 2 or (x^2 =) 100 ÷ their 8 × 2		must have used at least one correct 1 sf value	
13	or 25 or their $8 \times 5 \times 5 \times 0.5 = 100$ or $8 \times 5 \times 5 \times 0.5 =$ their 100	M1dep		
	5 with M2 seen	A1		
	Additional Guidance			
	If working is done with approximations the working with the given values and approximations	and with mark the	the given values ignore working with	

Question	Answer	Mark	Comme	nts
	Alternative method 1: work out the	value of k	ooth angles	
	(<i>b</i> =) 90 ÷ 5 × 3 or 54	M1	oe may be on diagram fo	or <i>b</i> or <i>x</i>
	$(x =) \frac{360 - 90 - \text{their 54}}{3 + 1} \text{ or } \frac{216}{4}$	M1dep	oe	
	(b =) 54 and $(x =) 54with M2 awarded$	A1		
	Alternative method 2: assumes bo quadrilateral	are equal and uses sum	of angles in a	
	(<i>b</i> =) 90 ÷ 5 × 3 or 54	M1	oe may be on diagram f	for <i>b</i> or <i>x</i>
14	90 + their 54 + their 54 + 3 × their 54 or 360 - 90 - their 54 - their 54 and either $3 \times$ their 54 or their 162 ÷ 3 or their 162 ÷ 54 90 + 54 + 54 + 162 = 360 and 54 × 3 = 162 or 360 - 90 - 54 - 54 = 162 and $162 \div 3 = 54$ or $162 \div 54 = 3$	M1dep A1	oe addition of the four angle quadrilateral or subtracti two equal angles from 3 and multiplication to work ou or division of the fourth a to act as a check	es in the on of 90 and the 60 t the fourth angle angle by 3 or 54
	Alternative method 3: assumes bo	th angles	are equal and uses ratio	to check 90°
	5:3:3:9	M1		
	$360 \div (5 + 3 + 3 + 9) \times 5$ or $360 \div 20 \times 5$	M1dep	oe	
	$360 \div 20 \times 5 = 90$ with M2 awarded	A1		
	Ade	ditional G	uidance	
	Any correct method to work out 54 sc	ores M1 o	on alt 1 or alt 2	

Question	Answer	Mark	Comme	nts
15(a)	20 48 88 108 120	B1		
	All 5 points plotted using upper class bounds and their cf values	M1	$\pm \frac{1}{2}$ small square must be increasing	
	Smooth curve or polygon for their cf values	A1ft	$\pm \frac{1}{2}$ small square must be increasing	
	Ad			
15(b)	If (a) is correct, points should be at (1 and (50, 120)			
	For A1, the graph should start at (0, 0			
	For A1, the graph should end at $m = 50$ unless it followed by a horizontal line adjoining (50, 120)			
	Histogram only			M0A0
	Histogram and graph			Mark curve

15(c)	Line from 15 marks to their graph	M1	$\pm \frac{1}{2}$ small square implied by mark at correct graph or on the vertical at the horizontal axis) or by from their graph	ct place on the axis (but not on correct reading
	Correct reading from their graph for 15 marks	A1ft	$\pm \frac{1}{2}$ small square	
	Additional Guidance			
	Correct reading for their graph, with c	M1A1		
	No graph in (b)	M0A0		
	For M1 and A1ft the domain of their graph must be at least $10 \le m \le 20$ and their graph must be increasing in the domain $10 \le m \le 50$ or from m = 10 if their graph does not extend to $m = 50$			

Question	Answer	Mark	Commei	nts
	Correct factorisation of numerator $2(2x - 4x^2)$ or $4(x - 2x^2)$ or $x(4 - 8x)$ or $2x(2 - 4x)$ or $4x(1 - 2x)$ or correct factorisation of denominator 2(6x - 3) or $3(4x - 2)$ or $6(2x - 1)orcorrect cancelling by 2 throughout\frac{2x - 4x^2}{6x - 3}$	M1	oe with negative coeffici	ents
16	Correct fraction with numerator 4x(1-2x) or $-4x(2x-1)and denominator6(2x-1)$ or $-6(1-2x)or-\frac{4x}{6} or \frac{-4x}{6} or \frac{4x}{-6}or\frac{2x(2-4x)}{-3(2-4x)} or \frac{2x(2-4x)}{3(4x-2)}$	M1dep	oe with cancelling of 2 th eg $\frac{2x(1-2x)}{3(2x-1)} \text{ or } \frac{2x(1-2x)}{-3(1-2x)}$	nroughout <u>)</u> :)
	$-\frac{2x}{3}$ or $-\frac{2}{3}x$	A1	allow $\frac{-2x}{3}$ or $\frac{2x}{-3}$	
	Additional Guidance			
	Allow multiplication signs up to M1M1	1		
	Allow -0.6 for $-\frac{2}{3}$			
	Do not allow -0.66 for $-\frac{2}{3}$			
	For the first M1 only, allow any correct attempts	ct factorisa	ation seen within multiple	

Question	Answer	Mark	Comme	nts
	$y^2 = \frac{1}{2}y(y+3)$		= 3y or y = 0	
		B2	B1 $\frac{1}{2}y(y+3)$ oe expression	ı
			or an otherwise correct equation using a different unknown or combination of unknowns	
	Ad			
	Allow multiplication signs			
17(a)	eg $y \times y = \frac{y}{2} \times (y + 3)$			B2
	$y^2 = \frac{1}{2}y(y + 3)$ followed by incorrect s the equation	$y^2 = \frac{1}{2}y(y + 3)$ followed by incorrect simplification or attempt to solve the equation		
	$y^2 = \frac{1}{2}y + y + 3$	B0		
	3 only or 0 only or 0 and 3 only		В0	
	Do not allow missing or partially missing brackets unless recovered eg1 $y^2 = \frac{1}{2}y \times y + 3$ without correct equation seen			
	eg2 $y^2 = \frac{1}{2}y(y+3)$ without correct e	quation se	een	В0

Question	Answer	Mark	Commei	nts
	Correct comment		eg1 he hasn't square roo	oted (correctly)
	or	R1	eg2 it should be $\sqrt{8} x = 3$	
	shows correct working		eg3 he should have divid square rooting	ded (by 8) before
	Ad	ditional (Guidance	
	$\sqrt{8}$ may be given as $2\sqrt{2}$			
	Comment that he shouldn't have a ne	egative an	swer	В0
	Mathematically incorrect statement			В0
	Correct comment and an incorrect co		B0	
	Example responses			
	He has taken it as $(8x)^2$		B1	
	He has divided $8x^2$ by x (instead of square rooting) and square rooted the 9			B1
17(b)	He $$ first when supposed to divide it by 8			B1
	He didn't divide 9 by 8 to get x^2			B1
	At the start he took the 8 over when you want $\sqrt{\frac{9}{8}}$			B1
	Toby should have got $\pm \sqrt{\frac{9}{8}}$			B1
	He should have divided by 8			В0
	Toby didn't square root 8x			В0
	He hasn't square rooted the $8x^2$ to least	ave x on i	ts own	В0
	He hasn't square rooted the other sid	e to just g	let x	В0
	Didn't divide by 8			B0
	He should have divided by $8x$			B0
	He found the square root of 9 but did	n't write $$	$\sqrt{8x} = 9$	B0

Question	Answer	Mark	Comme	nts	
			·		
	(193 + 7)(193 – 7) or (200)(186) or 200 (×) 186	M1	either order		
	(200)(186) = 37 200				
	or	A1			
	200 (×) 186 = 37 200				
18(a)	Additional Guidance				
	37200 with correct method not seen	M0A0			
	37 200 from 37 249 – 49 only	M0A0			
	37 200 from (200)(186) or 200 (×) 186	M1A1			
	Do not award M1 for a 'misread' eg (193 + 2)(193 – 2)			M0A0	

	(10a + 9b)(10a - 9b) or (9b + 10a)(10a - 9b)	B1	either order	
18(b) Ad		ditional G	Guidance	
	Condone missing final bracket, eg (1	B1		
Condone a multiplication sign eg $(10a + 9b) \times (10a - 9b)$			(10 <i>a</i> – 9 <i>b</i>)	B1

19	<u>1</u> 9	B1	
----	---------------	----	--

Question	Answer	Mark	Comments	
	Alternative method 1: shows that <i>I</i>	BAC = AC	CD and alternate angles	
	ACD = ABC	M1	accept both with same letter on diagram	
	ABC = BAC	M1	accept both with same letter on diagram	
	BAC = ACD and alternate segment (theorem) with M2 awarded	M1dep	dep on M2	
	Other two correct reasons given with M3 awarded	A1	eg (base angles of) isosceles triangle and alternate angles	
20(a)	Alternative method 2: shows that <i>ABC</i> + <i>BCD</i> = 180 and co-interior angles			
20(4)	ACD = ABC	M1	accept both with same letter on diagram	
	ABC = BAC	M1	accept both with same letter on diagram	
	BCD = 180 - (BAC + ABC) + ACD and $ABC + BCD = 180$ and alternate segment (theorem) with M2 awarded	M1dep	oe dep on M2	
	Other two correct reasons given with M3 awarded	A1	eg (base angles of) isosceles triangle and (co-)interior angles or allied angles	
	The mark scheme for question 20(a) continu	ues on the next page	

Question	Answer	Mark	Commei	nts	
	Alternative method 3: line from mi	dpoint of	AB to C is perpendicular	to AB and CD	
	Let <i>M</i> be the midpoint of <i>AB</i> and <i>MC</i> is perpendicular to <i>AB</i>	M1	any letter		
	MC is perpendicular to CD	M1			
	<i>AB</i> and <i>CD</i> are both perpendicular to <i>MC</i> with M2 awarded	M1dep	oe dep on M2		
	Three correct reasons given with		eg		
	M3 awarded		(perpendicular bisector o triangle	of) isosceles	
		A1	and <i>MC</i> goes through th circle	ne centre of the	
			and tangent is perpendi	cular to radius	
	Additional Guidance				
20(a) (cont)	Other correct methods can be found lines. For example, by extending <i>BC</i> angles as a proof instead of alternation in the reasons required for the last m				
	In the scheme, <i>ACD</i> (for example) m <i>ACD</i>				
	Accept equality of angles indicated b not by arcs				
	Accept (angle) <i>B</i> for angle <i>ABC</i>				
	Do not accept (angle) A for angle BA unless intention is clear from annotat				
	For the third mark in alternative meth for angles if clearly marked on the dia				
	Do not award marks for an argument based only on assumed values of angles, but ignore 60° marked on diagram, which is for (b)				
	Ignore an angle marked at ADC				
	Ignore incorrect statements that do not affect the proof				
	eg ACD is an isosceles triangle (but not used in proof)				

Question	Answer	Mark	Comments
20(b)	\checkmark AB is parallel to DC		
	\checkmark AC bisects angle BCD	B1	
	AC bisects angle BAD		
	A	dditional	Guidance

Question	Answer	Mark	Comments			
	Alternative method 1: substitution	of 2 <i>x</i> + <i>p</i>	for y			
	2x + 3(2x + p) = 5p	М1	oe equation			
			eg $2x + 6x + 3p = 5p$			
	6x + 2x = 5p - 3p or $8x = 2p$		oe equation with terms collected			
		M1dep	condone incorrect expansion before rearrangement			
	Correct simplified terms		A1			
	$(x =) \frac{p}{1}$ or $\frac{1}{2}p$ or 0.25p		one correct simplified term			
		A2	or			
	and $(x = x) \frac{3p}{2}$ or $\frac{3}{2}$ or $1^{\frac{1}{2}}$ or $15^{\frac{1}{2}}$		otherwise correct terms for both with 'p' omitted			
	$(v-)$ $\frac{-}{2}$ or $\frac{-}{2}p$ or $\frac{-}{2}p$ or $\frac{-}{2}p$ or $1.5p$		eg $x = 0.25$ and $y = 1.5$			
			or			
21			correct unsimplified terms for both			
			eg $x = \frac{2p}{8}$ and $y = \frac{6p}{4}$			
	Alternative method 2: substitution of $y - p$ for $2x$					
	y - p + 3y = 5p	M1	oe equation			
	y + 3y = 5p + p or $4y = 6p$	M1dep	oe equation with terms collected			
	Correct simplified terms		A1			
	$(r =) \frac{p}{2}$ or $\frac{1}{2} p$ or $0.25p$		one correct simplified term			
	4 4^{P} 4^{-2}		or			
	and $(3p - 3 - 1)$		otherwise correct terms for both with ' p ' omitted			
	$(y =) \frac{1}{2}$ or $\frac{1}{2}p$ or $1\frac{1}{2}p$ or $1.5p$	A2	eg x = 0.25 and y = 1.5			
			or			
			correct unsimplified terms for both			
			eg $x = \frac{2p}{8}$ and $y = \frac{6p}{4}$			
	The mark scheme for question 21	continues	on the next page			

Question	Answer	Mark	Comments			
	Alternative method 3: elimination of	$\mathbf{D}\mathbf{f} \mathbf{X}$				
	y - 2x = p	M1	oe with multiplication of both equations			
	y + 3y = 5p + p or $4y = 6p$	M1den	oe			
		Mindep	addition must be seen if result is incorrect			
	Correct simplified terms		A1			
	$(x =) \frac{p}{1}$ or $\frac{1}{1}p$ or 0.25p		one correct simplified term			
	4 4		or			
	and 3 <i>n</i> 3 1		otherwise correct terms for both with ' p ' omitted			
	$(y =) \frac{\sigma_p}{2}$ or $\frac{\sigma}{2}p$ or $1\frac{1}{2}p$ or $1.5p$	A2	eg $x = 0.25$ and $y = 1.5$			
			or			
			correct unsimplified terms for both			
			eg $x = \frac{2p}{8}$ and $y = \frac{6p}{4}$			
21 (cont)	Alternative method 4: elimination of <i>y</i>					
	3y - 6x = 3p	M1	oe with multiplication of both equations			
	2x - (-6x) = 5p - 3p or $8x = 2p$	M1dep	ое			
			subtraction must be seen if result is incorrect			
	Correct simplified terms		A1			
	$(x =) \frac{p}{2}$ or $\frac{1}{2}p$ or $0.25p$		one correct simplified term			
	4 4 4 4 4		or			
	and $3p 3 .1 $		otherwise correct terms for both with ' p ' omitted			
	$(y =) \frac{-p}{2}$ or $\frac{-p}{2} p$ or $1 \frac{-p}{2} p$ or $1.5p$	A2	eg <i>x</i> = 0.25 and <i>y</i> = 1.5			
			or			
			correct unsimplified terms for both			
			eg $x = \frac{2p}{8}$ and $y = \frac{6p}{4}$			

Question	Answer	Mark	Commer	nts	
	-3b + 6a + 7.5b (= 6a + 4.5b) or $6a + 7.5b - 3b (= 6a + 4.5b)$ or 6a + 7.5b - (6a + 4.5b) = 3b	B1	oe rearranged equation	using all 5 terms	
22(2)	Additional Guidance				
22(d)	3 b + 6 a + 4.5 b = 6 a + 7.5 b			B1	
	6 a + 4.5 b + 3 b = 6 a + 7.5 b			B1	
	7.5 b – 3 b = 4.5 b , so 6 a + 4.5 b			B0	
	6a + 7.5b - 3b = 4.5b			B0	

Question	Answer	Mark	Comments	
	Alternative method 1: equal ratios	method 1: equal ratios from <i>k</i> a + 3b and 6a + 4.5b		
	(<i>BC</i> =) <i>k</i> a + 3 b		oe ratio	
	or <i>k</i> : 6 = 3 : 4.5	M1		
	or <i>k</i> : 3 = 6 : 4.5			
	$3 \times 6 \div 4.5$	M1dep	oe	
	or 4 a + 3 b			
	4	A1		
	Alternative method 2: scale factor	from ka +	3b and 6a + 4.5b	
	(<i>BC</i> =) <i>k</i> a + 3 b			
	or $4.5 \div 3$ or $\frac{3}{2}$		oe fractions or decimals	
	or $3 \div 4.5$ or $\frac{2}{3}$	M1		
22(0)	or $4.5 \div 6$ or $\frac{3}{4}$			
	or $6 \div 4.5$ or $\frac{4}{3}$			
	$6 \div \text{their } \frac{3}{2}$		ое	
	or $6 \times \text{their } \frac{2}{3}$			
	or $3 \div$ their $\frac{3}{4}$	M1dep		
	or $3 \times \text{their } \frac{4}{3}$			
	or 4 a + 3 b			
	4	A1		
	The mark scheme for question 22(b) contin	ues on the next page	

Question	Answer	Mark	Comments		
	Alternative method 3: equal ratios from $(k + 6)a + 7.5b$ and $6a + 4.5b$				
	(<i>BD</i> =) k a + 6 a + 7.5 b or (<i>BD</i> =) (k + 6) a + 7.5 b or (k + 6) : 6 = 7.5 : 4.5 or (k + 6) : 7.5 = 6 : 4.5	M1	oe ratio		
	$6 \times 7.5 \div 4.5 - 6$ or $4a + 3b$	M1dep	ое		
	4	A1			
	Alternative method 4: scale factor	from (<i>k</i> +	6)a + 7.5b and 6a + 4.5b		
22(b) (cont)	(BD =) ka + 6a + 7.5b or $(BD =) (k + 6)a + 7.5b$ or $7.5 \div 4.5$ or $\frac{5}{3}$ or $4.5 \div 7.5$ or $\frac{3}{5}$ or $4.5 \div 6$ or $\frac{3}{4}$	M1	oe fractions or decimals		
	or $6 \div 4.5$ or $\frac{1}{3}$ $6 \times \text{their } \frac{5}{3} - 6$ or $6 \div \text{their } \frac{3}{5} - 6$ or $7.5 \div \text{their } \frac{3}{4} - 6$ or $7.5 \times \text{their } \frac{4}{3} - 6$ or $4\mathbf{a} + 3\mathbf{b}$	M1dep	oe		
	4	A1			
	Additional Guidance for question 22	2(b) is on	the next page		

Question	Answer	Mark	Comme	nts		
	Additional Guidance					
	Check the diagram for working					
	If working is not seen, only accept exa fractions for method marks					
22(b) (cont)	Answer 4 with no working or no incorre	M1M1A1				
	Assumes that <i>BC</i> is $3a + 2.25b$ (half the or that <i>BC</i> is $2a + 1.5b$ (one third of the	ne length o e length of	f CD) CD)	M0M0A0 M0M0A0		
	4a on the answer line does not get the method marks	ut may have scored the				

Question	Answer	Mark	Comments		
	Alternative method 1				
	$(8^4 =) (2^3)^4$ or 2^{12}				
	or 2 2	M1			
	$(32^{\overline{5}} =) (2^5)^{\frac{1}{5}}$ or 2^2				
	2^{12} and 2^2		or calculation in the form		
		M1dep	$2^a \div 2^b$ where $a - b = 10$		
			$2^c \times 2^a$ where $c + d = 10$		
	2 ¹⁰	A1	Accept $m = 10$		
	Alternative method 2				
23	$(8^4 =) 4096 \text{ or } (32^{\frac{2}{5}} =) 4$	M1			
	1024	M1dep			
	2 ¹⁰	A1	Accept $m = 10$		
	Additional Guidance				
	Note that 1024 from 32 × 32 scores 2 marks if 1024 is their final numerical answer				
	However, if they then try to find $\sqrt[5]{1024}$ they are clearly processing $\frac{2}{3}$				
	(32 ⁵ =), so this would only score 0 marks without further work				
	If a numerical method and an index method are both attempted and an incorrect answer is given, award up to M1M1 from the better method				

24 –1	B1	
-------	----	--

Question	Answer	Mark	Commei	nts
	(gradient of $OP =$) $\frac{8-0}{4-0}$	M1	oe eg (gradient of <i>OP</i> =	$)\frac{8}{4}$
	(gradient of <i>OP</i> =) 2 or $\frac{2}{1}$	A1	oe accept 'negative recipro	cal, so $-\frac{1}{2}$
	and 1 1			2
	$-1 \div 2 = -\frac{1}{2}$ or $2 \times -\frac{1}{2} = -1$		or 'product of gradients	is -1 , so $-\frac{1}{2}$
25(a)	with M1 seen		oe comment	
	Additional Guidance			
	$4 \div 8 = \frac{1}{2}$ but slope is negative, so $-\frac{1}{2}$			M0A0
	Do not accept a gradient including <i>x</i>			
	eg $\frac{8}{4}$ = 2, so gradient of <i>OP</i> = 2 <i>x</i> , pr	roduct of g	pradients is -1, so $-\frac{1}{2}x$	M1A0

Question	Answer	Mark	Comments	
	Alternative method 1: $y = -\frac{1}{2}x + c$	and subs	titutes 8 and 4	
	$8 = -\frac{1}{2} \times 4 + c$ or (c =) 10	M1	oe implied by $y = -\frac{1}{2}x + 10$	
	$0 = -\frac{1}{2}x + \text{their 10 or } (x =) 20$	M1dep	ое	
	their 20^2 + their 10^2 or 500 or $\sqrt{500}$	M1dep	oe eg 2 $\sqrt{125}$ dep on M2	
	10 √5	A1	accept $a = 10$ with $\sqrt{500}$ seen	
	Alternative method 2: uses the formula for a line and substitutes $x = 0$ and $y = 0$			
25(b)	$y - 8 = -\frac{1}{2}(x - 4)$ and substitutes $x = 0$ or $y = 0$ or $(x =) 20$ or $(y =) 10$	M1	oe equation eg $x + 2y = 20$	
	$y - 8 = -\frac{1}{2}(x - 4)$ and substitutes $x = 0$ and substitutes $y = 0$ or $(x =) 20$ and $(y =) 10$	M1	oe equation eg $x + 2y = 20$	
	their 20^2 + their 10^2 or 500 or $\sqrt{500}$	M1dep	oe eg 2 $\sqrt{125}$ dep on M2	
	10 √5	A1	accept $a = 10$ with $\sqrt{500}$ seen	
	The mark scheme for question 25(b) continues on the next page			

Question	Answer	Mark	Commer	nts		
	Alternative method 3: uses formula for gradient with points A and B					
25(b) (cont)	$\frac{8-0}{4-x} = -\frac{1}{2}$ or $(x =) 20$	M1	oe correct method to work out the <i>x</i> -coordinate of point <i>A</i>			
	$\frac{y-8}{0-4} = -\frac{1}{2}$ or $(y =) 10$	M1	oe correct method to work out the y-coordinate of point <i>B</i>			
	their 20^2 + their 10^2 or 500 or $\sqrt{500}$	M1dep	oe eg 2 $\sqrt{125}$ dep on M2			
	10 √5	A1	accept $a = 10$ with $\sqrt{500}$	seen		
	Additional Guidance					
	Check the diagram and 25(a) for possible correct working or values eg 1 20 marked on axis at A eg 2 10 marked on axis at <i>B</i>			M1 M1		
	On alternative method 2, if using $y - 8 = -\frac{1}{2}(x - 4)$, they must substitute $x = 0$ or $y = 0$ for M1 and both separately for M1M1					
	On alternative method 2, incorrect rearrangement of $y - 8 = -\frac{1}{2}(x - 4)$ can score up to 3 marks					
	eg $y-8 = -\frac{1}{2}(x-4), \ 2y-8 = -x-4,$					
	when $y = 0, x = 4$, when $x = 0, y = 2$, $\sqrt{4^2 + 2^2} = \sqrt{20}$			M1M1M1		
26	$(x - 2)^2$ or $(x + 2)^2$ or $a = 2$	M1	oe implied by $x^2 + 2x +$ or $x^2 + 4x + 4 (+ b)$	2 <i>x</i> + 4 (+ <i>b</i>)		
	$1 = (3 + 2)^2 + b$	M1dep	ое			
	-24	A1	accept (-2, -24)			
	Additional Guidance					
	$(x-2)^{2}$ 1 = (3-2) ² + b			M0 M0		

Question	Answer	Mark	Comments		
27	$\sin 60^\circ = \frac{\sqrt{3}}{2}$		oe		
	2				
	or $\tan 30^{\circ} = \frac{\sqrt{3}}{3}$ or $\frac{1}{\sqrt{3}}$	M1	may be implied by position in multiplication		
	or $\tan 30^{\circ} (= \frac{\sin 30}{\cos 30}) = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$				
	$\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} = \frac{1}{2}$		oe works out the value of cos <i>x</i> as a fraction or decimal with no surd values		
	or $\cos x = \frac{1}{2}$	M1dep			
	or $(x =) \cos^{-1} \frac{1}{2}$				
	60 with M2 awarded	A1			
	Additional Guidance				
	$\cos x = 60$ does not score the final mark				