GCSE
 MATHEMATICS 8300/1H

Higher Tier Paper 1 Non-Calculator
Mark scheme
June 2019
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

$\mathbf{1}$	9	B1	
$\mathbf{2}$	$2 \frac{7}{9}$	B1	

$\mathbf{3}$	6π	B1	
$\mathbf{4}$	$\frac{37}{8}$	B1	

5(a)	9.7×10^{-4}	B1	
	Additional Guidance		
	Condone 9.7. 10^{-4} or $9.7 \cdot 10^{-4}$		B1
	Ignore zeroes before the ' 9 ' eg 00009.7×10^{-4}		B1
	$9.7 \times 10^{4-}$		B0

Question	Answer	Mark	Comments

5(b)	300000 and 4000 or $\begin{aligned} & \left(10^{5} \div 10^{3}=\right) 10^{2} \\ & \text { or }\left(10^{5} \div 10^{3}=\right) 100 \end{aligned}$ or $7.5 \times 10^{(1)}$ or 75×10^{0} or $\frac{3 \times 10^{2}}{4} \text { or } \frac{300}{4}$	M1	
	75	A1	
	Additional Guidance		
	If the answer is given in standard form and as 75 the student must indicate that 75 is their chosen answer or it must be the final answer given eg1 $7.5 \times 10^{(1)}=75$ on the answer line eg2 $75=7.5 \times 10^{(1)}$ on the answer line		M1A1 M1A0
	$\frac{300}{4}$ or 75 from incorrect working scores zero eg1 $3 \times 10^{5}=30000$ and $4 \times 10^{3}=400$ and $30000 \div 400=\frac{300}{4}=75$ eg2 $\frac{30000}{400}=75$		$\begin{aligned} & \text { MOAO } \\ & \text { MOAO } \end{aligned}$
	For the method mark, ignore incorrect work from a correct expression eg $0.75 \times 10^{2}=7.5 \times 10^{3}$		M1A0
	If the student attempts two methods (simplifying the powers and attempting to convert to ordinary numbers) mark both methods and award the higher mark		

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

6(b)	Alternative method 1: $\mathrm{P}(1)+\mathrm{P}(4,5$ or 6$) \times \mathrm{P}(\mathrm{Odd})$		
	$\frac{1}{2} \times$ their $\frac{1}{2}$ or $\frac{1}{4}$	M1	oe
	their $\frac{1}{4}+$ their $\frac{1}{6}$	M1dep	oe
	$(P($ win $)=) \frac{10}{24}$ or $\frac{5}{12}$	A1ft	oe ft their tree diagram
	Lose (and P(Lose) $=\frac{14}{24}$ or $\frac{7}{12}$ oe)	A1ft	ft correct decision for their $\frac{5}{12}$ (and their $\frac{7}{12}$) with M2 scored
	Alternative method 2: 1 - P(2 or 3)-P(4, 5 or 6$) \times \mathrm{P}($ Even)		
	$\frac{1}{2} \times$ their $\frac{1}{2}$ or $\frac{1}{4}$	M1	oe
	their $\frac{1}{4}+$ their $\frac{1}{3}$ or $\mathrm{P}($ lose $)=\frac{7}{12}$	M1dep	oe ft their tree diagram
	$(P($ win $)=) \frac{10}{24}$ or $\frac{5}{12}$	A1ft	oe ft their tree diagram
	Lose (and $P($ Lose $)=\frac{14}{24}$ or $\frac{7}{12}$ oe)	A1ft	ft correct decision for their $\frac{5}{12}$ (and their $\frac{7}{12}$) with M2 scored
	Additional Guidance is on the following page		

Question	Answer	Mark	Comments

6(b) cont	Additional Guidance	
	Check the tree diagram for working	
	Any 'their' or ft probability must be >0 and < 1 for marks to be awarded	
	For the second A1ft, the ft can be from an incorrect tree (which may score 4 marks) or an arithmetic error (which scores 3 marks, M1M1A0A1ft)	
	Accept equivalent fractions or decimals within calculations and equivalent fractions, decimals or percentages for final probabilities	
	Accept decimals or percentages rounded or truncated correctly to at least 2 significant figures	
	Condone $\frac{1}{2} \times$ their $\frac{1}{2}$ as part of a longer, incorrect multiplication eg $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{6}$	M1M0A0A0
	Condone decimals used within fractions eg $P($ Win $)=\frac{2.5}{6}$	at least M1M1A1
	For the method marks, condone incorrect mathematical notation eg $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}+\frac{1}{6}=\ldots$	at least M1M1 (may go on to score 3 or 4 marks)
	For the second A 1 ft , if the student gives a value for P (Lose), their $\mathrm{P}($ Win $)$ + their $\mathrm{P}($ Lose $)$ must equal 1 However, allow a comparison to $\frac{1}{2}$ unless it is clearly an incorrect value for P(Lose)	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

8	$\left(3^{12}=\right) 531441$ or $\left(3^{5}=\right) 243$ or $\left(3^{12} \div 3^{5}=\right) 3^{7} \text { or }\left(3^{12} \div 3^{5}=\right) 2187$ or $\left(3^{2} \times 3=\right) 3^{3} \text { or }\left(3^{2} \times 3=\right) 27$ or $3^{12} \div 3^{5} \div 3^{2} \div 3$ or $\frac{3^{12}}{3^{5}} \times \frac{1}{3^{2} \times 3}$	M1		
	$3^{7} \div 3^{3} \text { or } 3^{7} \div 27$ or $3^{(12-5-2-1)}$ or $\frac{3^{12}}{3^{8}}$ or 3^{4} or $2187 \div 27$	M1dep	oe in the form $3^{n} \div 3^{(n-4)}$	
	81	A1		
	Additional Guidance			
	3^{4} and 81 on the answer line in either order			M1M1A1
	81 in working and 3^{4} on the answer line			M1M1A0

Question	Answer	Mark	Comments

Alternative method 1: areas

$\pi \times 10^{2}$ or 100π	M1	implied by [314, 314.2]
$\pi \times(8 \div 2)^{2}$ or $\pi \times 4^{2}$ or 16π or $\pi \times(8 \div 2)^{2} \div 2$ or $\pi \times 4^{2} \div 2$ or $16 \pi \div 2$ or 8π	M1	implied by [50.2, 50.3] or [25.12, 25.14] 92π or 84π or $92: 8$ or $8: 92$ or $84: 16$ or $16: 84$ implies M1M1
(their $100(\pi)$ - their $8(\pi)) \div$ their $8(\pi)$ or $92(\pi) \div 8(\pi)$ or their $100(\pi) \div$ their $8(\pi)(-1)$	M1dep	dep on M2 absence of π must be consistent condone $16(\pi)$ as their $8(\pi)$ in first calculation only, ie condone (their $100(\pi)-$ their $16(\pi)) \div$ their $16(\pi)$ or $84(\pi) \div 16(\pi)$, but not their $100(\pi) \div$ their $16(\pi)(-1)$
$11 \frac{1}{2}$ or 11.5	A1 or $12.5(-1)$	condone $\frac{23}{2}$

Alternative method 2: scale factor

$\frac{10}{8 \div 2}$ or $\frac{10}{4}$ or $\frac{5}{2}$	M1	oe scale factor of lengths eg $\frac{2}{5}$ or 0.4 accept $2: 5$ or $5: 2$ oe ratio or $\frac{10 \times 2}{8}$ or $\frac{20}{8}$ or 2.5 in numerator and denominator
(their $\left.\frac{5}{2}\right)^{2}$ or $\frac{25}{4}$	M1dep	oe scale factor of areas eg $\frac{4}{25}$ accept $4: 25$ or $25: 4$ oe ratio
$2 \times$ their $\frac{25}{4}(-1)$ or $\frac{25}{2}(-1)$	M1dep	oe eg $2 \div$ their $\frac{4}{25}(-1)$

Additional Guidance is on the following page

Question	Answer	Mark	Comments

$\begin{gathered} 9 \\ \text { (cont) } \end{gathered}$	Additional Guidance	
	Accept, for example, $\pi 8$ or $\pi \times 8$ or $8 \times \pi$ for 8π	
	An answer of 11.5π with no incorrect working	M1M1M1A0
	Consistent use of πd^{2} for the area of a circle gives the area of the circle as 400π, the area of the semicircle as 32π and the area of the shaded part as 368π. This also gives the answer 11.5 , but scores zero	MOMOMOAO
	Irrespective of where their answer comes from and the presence of other measures such as circumference, students can gain the first two marks of alternative method 1 if it is clear that the methods or values given are for area eg 1 Big area $=100 \pi$, little area $=8 \pi$, big circumference $=20 \pi$, little circumference $=4 \pi, 20 \div 4=5$ eg 2 $100 \pi, 8 \pi, 20 \pi, 4 \pi$	M1M1M0A0 MOMO
	Do not award the second mark if the value of 8π comes from πd This is implied by, eg, 'Area of circle $=20 \pi$, area of semi-circle $=8 \pi$ '	M?MO MOMO
	$\frac{100(\pi)-16(\pi)}{16(\pi)}$ (which may give an answer of 5.25)	M1M1M1A0
	$\frac{100(\pi)}{16(\pi)}$ (which may give an answer of 6.25)	M1M1M0A0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

| Vertical line from $3 \frac{1}{2}$ minutes to
 their graph | | $\pm \frac{1}{2}$ small square
 implied by mark at correct place on the
 graph or on the vertical axis (but not on
 the horizontal axis) or by correct reading
 from their graph | |
| :--- | :--- | :--- | :--- | :--- |
| | Correct reading from their graph for
 $t=3.5$ | A1ft | ft their graph $\pm \frac{1}{2}$ small square |

Question	Answer	Mark	Comments

11	Alternative method 1			
	$330 \div(7+4)$ or 30	M1	oe	
	$7 \times$ their 30 or 210 and $4 \times$ their 30 or 120	M1dep	oe	
	45	A1		
	Alternative method 2			
	$330 \div(7+4)$ or 30	M1	oe	
	$(7-4) \times$ their 30 or 90	M1dep	oe	
	45	A1		
	Alternative method 3			
	$330 \div(7+4)$ or 30	M1	oe	
	$7 \times$ their 30 or 210 or $4 \times$ their 30 or 120 and $330 \div 2$ or 165	M1dep	oe	
	45	A1		
	Alternative method 4			
	$330 \div(7+4)$ or 30	M1	oe	
	their 30×1.5	M1dep	oe	
	45	A1		
	Additional Guidance			

Question	Answer	Mark	Comments

12	-9	2	-7	-5	-12	B1	

13	One of $\begin{aligned} & (102 \rightarrow) 100 \\ & (8.14 \rightarrow) 8 \end{aligned}$	M1		
	their $100=0.5 \times x^{2} \times$ their 8 or $\left(x^{2}=\right)$ their $100 \div 8 \times 2$ or $\left(x^{2}=\right) 100 \div$ their 8×2 or 25 or their $8 \times 5 \times 5 \times 0.5=100$ or $8 \times 5 \times 5 \times 0.5=\text { their } 100$	M1dep	oe must have used at le value	one correct 1 sf
	5 with M2 seen	A1		
	Additional Guidance			
	If working is done with approximations and with the given values ignore the working with the given values and mark the working with approximations			

Question	Answer	Mark	Comments

Alternative method 1: work out the value of both angles

$(b=) 90 \div 5 \times 3$ or 54	M 1	oe may be on diagram for b or x
$(x=) \frac{360-90-\text { their } 54}{3+1}$ or $\frac{216}{4}$	M1dep	oe
$(b=) 54$ and $(x=) 54$ with M2 awarded	A 1	

Alternative method 2: assumes both angles are equal and uses sum of angles in a quadrilateral

($b=$) $90 \div 5 \times 3$ or 54	M1	oe may be on diagram for b or x
$90+$ their $54+$ their $54+3 \times$ their 54 or 360 - 90 - their 54 - their 54 and either $3 \times$ their 54 or their $162 \div 3$ or their $162 \div 54$	M1dep	oe addition of the four angles in the quadrilateral or subtraction of 90 and the two equal angles from 360 and multiplication to work out the fourth angle or division of the fourth angle by 3 or 54 to act as a check
$\begin{aligned} & 90+54+54+162=360 \\ & \text { and } 54 \times 3=162 \\ & \text { or } \\ & 360-90-54-54=162 \\ & \text { and } 162 \div 3=54 \text { or } 162 \div 54=3 \end{aligned}$	A1	oe

Alternative method 3: assumes both angles are equal and uses ratio to check 90°

$5: 3: 3: 9$	M1			
$360 \div(5+3+3+9) \times 5$ or $360 \div 20 \times 5$	M1dep	oe		
$360 \div 20 \times 5=90$ with M2 awarded	A1			
Additional Guidance				
Any correct method to work out 54 scores M1 on alt 1 or alt 2				

| Question | Answer | | | | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | Comments

15(b)	All 5 points plotted using upper class bounds and their of values	M1	$\pm \frac{1}{2}$ small square must be increasing	
	Smooth curve or polygon for their cf values	A1ft	$\pm \frac{1}{2}$ small square must be increasing	
	Additional Guidance			
	If (a) is correct, points should be at $(10,20),(20,48),(30,88),(40,108)$ and (50, 120)			
	For A1, the graph should start at (0, 0) or (1,0) or (10,20)			
	For A1, the graph should end at $m=50$ unless it followed by a horizontal line adjoining $(50,120)$			
	Histogram only			MOAO
	Histogram and graph			Mark curve

15(c)	Line from 15 marks to their graph	M1	$\pm \frac{1}{2}$ small square implied by mark at correct place on the graph or on the vertical axis (but not on the horizontal axis) or by correct reading from their graph	
	Correct reading from their graph for 15 marks	A1ft	$\pm \frac{1}{2}$ small square	
	Additional Guidance			
	Correct reading for their graph, with or without evidence of using graph			M1A1
	No graph in (b)			MOAO
	For M1 and A1ft the domain of their graph must be at least $10 \leqslant m \leqslant 20$ and their graph must be increasing in the domain $10 \leqslant m \leqslant 50$ or from $m=10$ if their graph does not extend to $m=50$			

Question	Answer	Mark	Comments

| Correct factorisation of numerator
 $2\left(2 x-4 x^{2}\right)$ or $4\left(x-2 x^{2}\right)$
 or $x(4-8 x)$ or $2 x(2-4 x)$
 or $4 x(1-2 x)$
 or
 correct factorisation of denominator
 $2(6 x-3)$ or $3(4 x-2)$ or $6(2 x-1)$
 or
 correct cancelling by 2 throughout
 $\frac{2 x-4 x^{2}}{6 x-3}$ | oe with negative coefficients |
| :--- | :--- | :--- | :--- |

Question	Answer	Mark	Comments

17(a)	$y^{2}=\frac{1}{2} y(y+3)$	B2	oe equation eg $2 y^{2}=y^{2}+3 y$ or $y^{2}=3 y$ or $y=0$ or $y=3$ or $y=0$ or 3 B1 $\frac{1}{2} y(y+3)$ oe expression or an otherwise correct equation using a different unknown or combination of unknowns	
	Additional Guidance			
	Allow multiplication signs eg $y \times y=\frac{y}{2} \times(y+3)$			B2
	$y^{2}=\frac{1}{2} y(y+3)$ followed by incorrect simplification or attempt to solve the equation			B2
	$y^{2}=\frac{1}{2} y+y+3$			B0
	3 only or 0 only or 0 and 3 only			B0
	Do not allow missing or partially missing brackets unless recovered eg1 $y^{2}=\frac{1}{2} y \times y+3$ without correct equation seen eg2 $y^{2}=\frac{1}{2} y(y+3$ without correct equation seen			B0 B0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

18(a)	$\begin{aligned} & (193+7)(193-7) \text { or }(200)(186) \\ & \text { or } 200(\times) 186 \end{aligned}$	M1	either order	
	$(200)(186)=37200$ or $200(\times) 186=37200$	A1		
	Additional Guidance			
	37200 with correct method not seen			MOAO
	37200 from 37249-49 only			MOAO
	37200 from (200)(186) or $200(\times) 186$ and 37249 - 49 also given			M1A1
	Do not award M1 for a 'misread' eg (193 + 2)(193-2)			MOAO

18(b)	$(10 a+9 b)(10 a-9 b)$ or $(9 b+10 a)(10 a-9 b)$	B1	either ord	
	Additional Guidance			
	Condone missing final bracket, eg (10a $+9 b)(10 a-9 b$			B1
	Condone a multiplication sign eg (10a $+9 b$) $\times(10 a-9 b)$			B1
19	$\frac{1}{9}$	B1		

Question	Answer	Mark	Comments

20(a)	Alternative method 1: shows that $B A C=A C D$ and alternate angles		
	$A C D=A B C$	M1	accept both with same letter on diagram
	$A B C=B A C$	M1	accept both with same letter on diagram
	$B A C=A C D$ and alternate segment (theorem) with M2 awarded	M1dep	dep on M2
	Other two correct reasons given with M3 awarded	A1	eg (base angles of) isosceles triangle and alternate angles
	Alternative method 2: shows that $A B C+B C D=180$ and co-interior angles		
	$A C D=A B C$	M1	accept both with same letter on diagram
	$A B C=B A C$	M1	accept both with same letter on diagram
	$\begin{aligned} & B C D=180-(B A C+A B C)+A C D \\ & \text { and } A B C+B C D=180 \end{aligned}$ and alternate segment (theorem) with M2 awarded	M1dep	oe dep on M2
	Other two correct reasons given with M3 awarded	A1	eg (base angles of) isosceles triangle and (co-)interior angles or allied angles
	The mark scheme for question 20(a) continues on the next page		

Question	Answer	Mark	Comments

$\begin{gathered} 20(a) \\ \text { (cont) } \end{gathered}$	Alternative method 3: line from midpoint of $A B$ to C is perpendicular to $A B$ and $C D$			
	Let M be the midpoint of $A B$ and $M C$ is perpendicular to $A B$	M1	any letter	
	$M C$ is perpendicular to $C D$	M1		
	$A B$ and $C D$ are both perpendicular to $M C$ with M2 awarded	M1dep	oe dep on M2	
	Three correct reasons given with M3 awarded	A1	eg (perpendicular bisector of) isosceles triangle and $M C$ goes through the centre of the circle and tangent is perpendicular to radius	
	Additional Guidance			
	Other correct methods can be found by extending one or more of the lines. For example, by extending $B C$ it is possible to use corresponding angles as a proof instead of alternating angles. This should be reflected in the reasons required for the last mark			
	In the scheme, $A C D$ (for example) means angle $A C D$ and not triangle ACD			
	Accept equality of angles indicated by labelling with the same letter, but not by arcs			
	Accept (angle) B for angle $A B C$ Do not accept (angle) A for angle BAC or (angle) C for angle $A C B$ unless intention is clear from annotation of the diagram			
	For the third mark in alternative method 2, accept algebraic expressions for angles if clearly marked on the diagram			
	Do not award marks for an argument based only on assumed values of angles, but ignore 60° marked on diagram, which is for (b)			
	Ignore an angle marked at $A D C$			
	Ignore incorrect statements that do not affect the proof eg $A C D$ is an isosceles triangle (but not used in proof)			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Alternative method 1: substitution of $\mathbf{2 x} \boldsymbol{+} \boldsymbol{p}$ for \boldsymbol{y}				
$2 x+3(2 x+p)=5 p$	M1	$\begin{array}{l}\text { oe equation } \\ \text { eg } 2 x+6 x+3 p=5 p\end{array}$		
$6 x+2 x=5 p-3 p$ or $8 x=2 p$	M1dep	$\begin{array}{l}\text { oe equation with terms collected } \\ \text { condone incorrect expansion before } \\ \text { rearrangement }\end{array}$		
Correct simplified terms		$\begin{array}{l}\text { A1 } \\ \text { one correct simplified term } \\ \text { or } \\ \text { otherwise correct terms for both with ' } p \text { ' } \\ \text { omitted } \\ \text { eg } x=0.25 \text { and } y=1.5 \\ \text { or } \frac{1}{4} p \text { or } 0.25 p \\ \text { and } \\ (y=) \frac{3 p}{2} \text { or } \frac{3}{2} p \text { or } 1 \frac{1}{2} p \text { or } 1.5 p\end{array}$ A2		
correct unsimplified terms for both			$\}$	eg $x=\frac{2 p}{8}$ and $y=\frac{6 p}{4}$
:---				

Alternative method 2: substitution of $y-p$ for $2 x$

$y-p+3 y=5 p$	M1	oe equation
$y+3 y=5 p+p$ or $4 y=6 p$	M1dep	oe equation with terms collected
Correct simplified terms		
$(x=) \frac{p}{4}$ or $\frac{1}{4} p$ or $0.25 p$ and $(y=) \frac{3 p}{2}$ or $\frac{3}{2} p$ or $1 \frac{1}{2} p$ or $1.5 p$A2A1 one correct simplified term or otherwise correct terms for both with ' p ' omitted eg $x=0.25$ and $y=1.5$ or correct unsimplified terms for both eg $x=\frac{2 p}{8}$ and $y=\frac{6 p}{4}$		

Question	Answer	Mark	Comments

$\begin{gathered} 21 \\ \text { (cont) } \end{gathered}$	Alternative method 3: elimination of x		
	$y-2 x=p$	M1	oe with multiplication of both equations
	$y+3 y=5 p+p$ or $4 y=6 p$	M1dep	oe addition must be seen if result is incorrect
	Correct simplified terms ($x=$) $\frac{p}{4}$ or $\frac{1}{4} p$ or $0.25 p$ and $(y=) \frac{3 p}{2}$ or $\frac{3}{2} p$ or $1 \frac{1}{2} p$ or $1.5 p$	A2	A1 one correct simplified term or otherwise correct terms for both with ' p ' omitted eg $x=0.25$ and $y=1.5$ or correct unsimplified terms for both eg $x=\frac{2 p}{8}$ and $y=\frac{6 p}{4}$
	Alternative method 4: elimination		
	$3 y-6 x=3 p$	M1	oe with multiplication of both equations
	$2 x-(-6 x)=5 p-3 p$ or $8 x=2 p$	M1dep	oe subtraction must be seen if result is incorrect
	Correct simplified terms $(x=) \frac{p}{4}$ or $\frac{1}{4} p$ or $0.25 p$ and $(y=) \frac{3 p}{2}$ or $\frac{3}{2} p$ or $1 \frac{1}{2} p$ or $1.5 p$	A2	A1 one correct simplified term or otherwise correct terms for both with ' p ' omitted $\text { eg } x=0.25 \text { and } y=1.5$ or correct unsimplified terms for both eg $x=\frac{2 p}{8}$ and $y=\frac{6 p}{4}$

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

22(b)	Alternative method 1: equal ratios from $k a+3 b$ and $6 a+4.5 b$		
	$\begin{aligned} & (B C=) k \mathbf{a}+3 \mathbf{b} \\ & \text { or } k: 6=3: 4.5 \\ & \text { or } k: 3=6: 4.5 \end{aligned}$	M1	oe ratio
	$3 \times 6 \div 4.5$ or $4 \mathbf{a}+\mathbf{3} \mathbf{b}$	M1dep	oe
	4	A1	
	Alternative method 2: scale factor from ka + $\mathbf{3 b}$ and $6 a+4.5 \mathrm{~b}$		
	$(B C=) k \mathbf{a}+3 \mathbf{b}$ or $4.5 \div 3$ or $\frac{3}{2}$ or $3 \div 4.5$ or $\frac{2}{3}$ or $4.5 \div 6$ or $\frac{3}{4}$ or $6 \div 4.5$ or $\frac{4}{3}$	M1	oe fractions or decimals
	$6 \div$ their $\frac{3}{2}$ or $6 \times$ their $\frac{2}{3}$ or $3 \div$ their $\frac{3}{4}$ or $3 \times$ their $\frac{4}{3}$ or $4 \mathbf{a}+3 \mathbf{b}$	M1dep	oe
	4	A1	
	The mark scheme for question 22(b) continues on the next page		

Question	Answer	Mark	Comments

22(b) (cont)	Alternative method 3: equal ratios from ($k+6$) $\mathrm{a}+7.5 \mathrm{~b}$ and $6 \mathrm{a}+4.5 \mathrm{~b}$		
	$\begin{aligned} & (B D=) k \mathbf{a}+6 \mathbf{a}+7.5 \mathbf{b} \\ & \text { or }(B D=)(k+6) \mathbf{a}+7.5 \mathbf{b} \\ & \text { or }(k+6): 6=7.5: 4.5 \\ & \text { or }(k+6): 7.5=6: 4.5 \end{aligned}$	M1	oe ratio
	$\begin{aligned} & 6 \times 7.5 \div 4.5-6 \\ & \text { or } 4 a+3 b \end{aligned}$	M1dep	oe
	4	A1	
	Alternative method 4: scale factor from (k+6)a+7.5b and 6a+4.5b		
	$\begin{aligned} & (B D=) k \mathbf{a}+6 \mathbf{a}+7.5 \mathbf{b} \\ & \text { or }(B D=)(k+6) \mathbf{a}+7.5 \mathbf{b} \\ & \text { or } 7.5 \div 4.5 \text { or } \frac{5}{3} \\ & \text { or } 4.5 \div 7.5 \text { or } \frac{3}{5} \\ & \text { or } 4.5 \div 6 \text { or } \frac{3}{4} \\ & \text { or } 6 \div 4.5 \text { or } \frac{4}{3} \end{aligned}$	M1	oe fractions or decimals
	$6 \times$ their $\frac{5}{3}-6$ or $6 \div$ their $\frac{3}{5}-6$ or $7.5 \div$ their $\frac{3}{4}-6$ or $7.5 \times$ their $\frac{4}{3}-6$ or $4 \mathbf{a}+3 \mathbf{b}$	M1dep	oe
	4	A1	
	Additional Guidance for question 22(b) is on the next page		

Question	Answer	Mark	Comments

$\begin{gathered} \text { 22(b) } \\ \text { (cont) } \end{gathered}$	Additional Guidance	
	Check the diagram for working	
	If working is not seen, only accept exact decimal values in place of fractions for method marks	
	Answer 4 with no working or no incorrect working	M1M1A1
	Assumes that $B C$ is $3 a+2.25 b$ (half the length of $C D$) or that $B C$ is $2 a+1.5 b$ (one third of the length of $C D$)	MOMOAO MOMOAO
	$4 a$ on the answer line does not get the A mark, but may have scored the method marks	

Question	Answer	Mark	Comments

23	Alternative method 1			
	$\left(8^{4}=\right)\left(2^{3}\right)^{4} \text { or } 2^{12}$ or $\left(32^{\frac{2}{5}}=\right)\left(2^{5}\right)^{\frac{2}{5}} \text { or } 2^{2}$	M1		
	2^{12} and 2^{2}	M1dep	or calculation in the $2^{a} \div 2^{b}$ where $a-b$ $2^{c} \times 2^{d}$ where $c+d$	
	2^{10}	A1	Accept $m=10$	
	Alternative method 2			
	$\left(8^{4}=\right) 4096 \text { or }\left(32^{\frac{2}{5}}=\right) 4$	M1		
	1024	M1dep		
	2^{10}	A1	Accept $m=10$	
		itional	idance	
	Note that 1024 from 32×32 numerical answer However, if they then try to ($32^{\frac{2}{5}}=$), so this would only	marks if they ar rks with	24 is their final clearly processing t further work	
	If a numerical method and incorrect answer is given,	thod are M1M1 fr	oth attempted and an the better method	

$\mathbf{2 4}$	-1	B1	

Question	Answer	Mark	Comments

25(a)	(gradient of $O P=$) $\frac{8-0}{4-0}$	M1	oe eg (gradient of $O P=\frac{8}{4}$	
	(gradient of $O P=$) 2 or $\frac{2}{1}$ and $-1 \div 2=-\frac{1}{2}$ or $2 \times-\frac{1}{2}=-1$ with M1 seen	A1	oe accept 'negative reciprocal, so $-\frac{1}{2}$, or 'product of gradients is -1 , so $-\frac{1}{2}$, oe comment	
	Additional Guidance			
	$4 \div 8=\frac{1}{2}$ but slope is negative, so $-\frac{1}{2}$			MOAO
	Do not accept a gradient including x eg $\frac{8}{4}=2$, so gradient of $O P=2 x$, product of gradients is -1 , so $-\frac{1}{2} x$			M1A0

Question	Answer	Mark	Comments

25(b)	Alternative method 1: $y=-\frac{1}{2} x+c$ and substitutes 8 and 4		
	$8=-\frac{1}{2} \times 4+c$ or $(c=) 10$	M1	oe implied by $y=-\frac{1}{2} x+10$
	$0=-\frac{1}{2} x+$ their 10 or $(x=) 20$	M1dep	oe
	their $20^{2}+$ their 10^{2} or 500 or $\sqrt{500}$	M1dep	oe eg $2 \sqrt{125}$ dep on M2
	$10 \sqrt{5}$	A1	accept $a=10$ with $\sqrt{500}$ seen
	Alternative method 2: uses the formula for a line and substitutes $x=0$ and $y=0$		
	$y-8=-\frac{1}{2}(x-4)$ and substitutes $x=0$ or $y=0$ or $(x=) 20$ or $(y=) 10$	M1	oe equation $\text { eg } x+2 y=20$
	$y-8=-\frac{1}{2}(x-4)$ and substitutes $x=0$ and substitutes $y=0$ or $(x=) 20$ and $(y=) 10$	M1	oe equation eg $x+2 y=20$
	their $20^{2}+$ their 10^{2} or 500 or $\sqrt{500}$	M1dep	oe eg $2 \sqrt{125}$ dep on M2
	$10 \sqrt{5}$	A1	accept $a=10$ with $\sqrt{500}$ seen
	The mark scheme for question 25(b) continues on the next page		

Question	Answer	Mark	Comments

25(b)(cont)	Alternative method 3: uses formula for gradient with points A and B			
	$\frac{8-0}{4-x}=-\frac{1}{2} \quad$ or $(x=) 20$	M1	oe correct method to work out the x-coordinate of point A	
	$\frac{y-8}{0-4}=-\frac{1}{2} \quad$ or $\quad(y=) 10$	M1	oe correct method to work out the y-coordinate of point B	
	their $20^{2}+$ their 10^{2} or 500 or $\sqrt{500}$	M1dep	oe eg $2 \sqrt{125}$ dep on M2	
	$10 \sqrt{5}$	A1	accept $a=10$ with $\sqrt{500}$ seen	
	Additional Guidance			
	Check the diagram and 25(a) for possible correct working or values eg 120 marked on axis at A eg 210 marked on axis at B			M1 M1
	On alternative method 2 , if using $y-8=-\frac{1}{2}(x-4)$, they must substitute $x=0$ or $y=0$ for M1 and both separately for M1M1			
	On alternative method 2 , incorrect rearrangement of $y-8=-\frac{1}{2}(x-4)$ can score up to 3 marks eg $y-8=-\frac{1}{2}(x-4), 2 y-8=-x-4$, when $y=0, x=4$, when $x=0, y=2, \quad \sqrt{4^{2}+2^{2}}=\sqrt{20}$			M1M

26	$(x--2)^{2}$ or $(x+2)^{2}$ or $a=2$	M1	oe implied by $x^{2}+2 x+2 x+4(+b)$ or $x^{2}+4 x+4(+b)$	
	$1=(3+2)^{2}+b$	M1dep	oe	
	-24	A1	accept ($-2,-24$)	
	Additional Guidance			
	$\begin{aligned} & (x-2)^{2} \\ & 1=(3-2)^{2}+b \end{aligned}$			$\begin{aligned} & \text { M0 } \\ & \text { M0 } \end{aligned}$

Question	Answer	Mark	Comments

